

# Acetamide Agar

For the differentiation of non fermentative Gram negative bacteria, in particular Pseudomonas aeruginosa.

Cat. 1391

### Practical information

| Aplications                 | Categories                              |  |
|-----------------------------|-----------------------------------------|--|
| Differentiation             | Non fermentative gram negative bacteria |  |
| Differentiation             | Pseudomonas aeruginosa                  |  |
| Industry: Water / Cosmetics |                                         |  |



#### Principles and uses

Acetamide Agar is used to determine the ability of non-fermenting Gram negative bacteria to deaminate the acetamide. The deamination of the acetamide produces ammonia which increases the pH of the medium. The resulting alkalinization is shown by a color change of the phenol red from yellow-orange to purple-red.

Pseudomonas aeruginosa is an opportunist pathogen for humans, capable of growing in water with a low concentration of nutrients. This is why natural mineral water and spring water are Pseudomonas aeruginosa free at the time of their commercialization. This microorganism can also be found in swimming pool water.

Acetamide deamination is accomplished by Pseudomonas.aeruginosa, Pseudomonas acidovorans, Group III (Achromobacter xylosoxidans), and Alcaligenes odorans.

Acetamide is a carbon source. Dextrose is a fermentable carbohydrate providing carbon and energy, the potassium salts have a high buffering capacity. Sodium chloride supplies essential electrolytes for transport and osmotic balance. Phenol red is a pH indicator and bacteriological agar is the solidifying agent.

## Formula in g/L

| Acetamide                      | 3   | Bacteriological agar | 15   |
|--------------------------------|-----|----------------------|------|
| Dextrose                       | 0,2 | Phenol red           | 0,03 |
| Potassium dihydrogen phosphate | 1   | Sodium chloride      | 5    |
| Yeast extract                  | 0,5 |                      |      |

#### Preparation

Suspend 24,7 grams of the medium in one liter of distilled water. Mix well and dissolve by heating with frequent agitation. Boil for one minute until complete dissolution. Dispense into tubes and sterilize in autoclave at 121 °C for 15 minutes. Allow to cool in a slanted position in order to obtain butts of 1,5 - 2,0 cm. depth.

#### Instructions for use

- Inoculate and incubate at a temperature of  $35 \pm 2^{\circ}$ C for 24-48 hours
- A positive reaction turns the medium an intense purple-red.
- P. aeruginosa is confirmed by positive asparagine and acetamide tests.

| Solubility | Appareance  | Color of the dehydrated medium | Color of the prepared medium | Final pH (25°C) |
|------------|-------------|--------------------------------|------------------------------|-----------------|
| w/o rests  | Fine powder | Pink-orange                    | Yellow-orange.               | 6,3 ± 0,2       |

## Microbiological test

| Incubation conditions: ( 35±2 °C/ 24-48 h) |               |                                             |  |  |
|--------------------------------------------|---------------|---------------------------------------------|--|--|
| Microorganisms                             | Specification | Characteristic reaction                     |  |  |
| Escherichia coli ATCC 25922                | Good growth   | No color change of the medium to purple-red |  |  |
| Pseudomonas aeruginosa ATCC 27853          | Good growth   | Color change of the medium to purple-red    |  |  |
| Proteus mirabilis ATCC 29906               | Good growth   | No color change of the medium to purple-red |  |  |
| Pseudomonas aeruginosa ATCC 9027           | Good growth   | Color change of the medium to purple-red    |  |  |

#### Storage

Temp. Min.:2 °C Temp. Max.:25 °C

#### Bibliography

Gilardi. 1974. Antonie van Leewenhoek. J. Microbiol. Serol. 39:229.

Buhlmann, Vischer and Bruhin. 1961. J. Bacteriol. 82:787.

Clesceri, Greenberg and Eaton (ed.) 1998. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington, D.C.

Murray, Baron, Pfaller, Tenover and Yolken (ed.). 1999. Manual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D.C