

Agar LMDA Cat. 1084

Agar diferencial múltiple que tiene la capacidad de diferenciar entre una gran variedad de bacterias, incluidas las bacterias que se encuentran en la cerveza.

Información práctica

Aplicaciones	Categorias
Diferenciación	Microorganismos de la industria cervecera

Industria: Bebidas alcohólicas

Principios y usos

El Agar LMDA es un medio nutritivo que detecta la mayoría de los organismos que se encuentran comúnmente en los procesos de fabricación de cerveza.

La cerveza no es un medio muy apropiado para el desarrollo de bacterias debido a sus características, como la baja cantidad de nutrientes disponibles, la presencia de alcohol, dióxido de carbono y dióxido de azufre, así como las bajas temperaturas de conservación. Las fases de filtración y pasteurización de la cerveza también contribuyen a la estabilización del producto contra los microorganismos.

El número de géneros y especies que usualmente lo contaminan es limitado. Como es el caso de las levaduras silvestres, las bacterias contaminantes causan turbidez y generan olores anómalos.

Las bacterias productoras de ácido se pueden identificar por la presencia de una zona clara alrededor de las colonias. La identificación adicional es facilitada por las reacciones de color características. Se puede agregar cicloheximida al medio para inhibir el crecimiento de la levaduras. Si desea detectar levaduras, no agregar cicloheximida e incubar en las mismas condiciones (tiempo y temperatura) y en anaerobiosis.

Fórmula en g/L

Glucosa	10	Agar bacteriológico	15
Verde de bromocresol	0,022	Carbonato cálcico	5
Pantotenato de calcio	2	Ácido cítrico	1,1
Fosfato dipotásico	0,5	Sulfato ferroso	0,01
Sulfato magnésico	0,2	Sulfato de manganeso	0,01
Fosfato monopotásico	0,5	Leche peptonizada	20
Cloruro sódico	0,01	Zumo de tomate	20
Tween 80	0,5	Extracto de levadura	10

Preparación

Suspender 84,8 gramos del medio en un litro de agua destilada. Mezclar bien y disolver por calentamiento agitando con frecuencia. Hervir durante un minuto hasta su completa disolución. Dispensar en recipientes apropiados y esterilizar en autoclave a 121 °C durante 15 minutos. Si se desea, agregar 0,007 gramos de cicloheximida.

Instrucciones de uso

- Inocular e incubar a 30 °C en condiciones anerobias durante 4-7 días.

Control de calidad

Solubilidad	Apariencia	Color del medio deshidratado	Color del medio preparado	Final pH (25°C)
Ligero precipitado	Polvo fino	Beige	Verde azulado	5,5±0,2

Test microbiológico

Condiciones de incubación: (30 °C, condiciones de anaerobiosis / 4-7 días).

Microrganismos	Especificación	Reacción característica
Pediococcus damnosusi ATCC 29358	Buen crecimiento	Cambio de color del medio de verde a amarillo-marrón. Colonias verdes de pequeño tamaño.
Pediococcus acidilactici ATCC 8042	Buen crecimiento	Cambio de color del medio de verde a amarillo-marrón. Colonias verde grisáceas.
Lactobacillus brevis ATCC 8287	Buen crecimiento	Ligero cambio de color del medio de verde a amarillo-marrón. Colonias azul grisaceas.
Lactobacillus fermentum ATCC 9338	Buen crecimiento	Cambio de color del medio de verde a amarillo-marrón. Colonias verdes blanquecinas con un centro verde.

Almacenamiento

Temp. Min.:2 °C Temp. Max.:8 °C

Bibliografía

Beer Spoilage Bacteria and hop Resistance Kanta Sakamoto and Wil N. Konings Max Louise and H. W. Scgoenlein, compilation of Culture Media.