

Caldo Czapek-Dox Modificado

Para el cultivo de hongos y bacterias utilizando nitrato de sodio como única fuente de nitrógeno

Información práctica

Aplicaciones	Categorias
Enriquecimiento	Aerobios mesófilos
Enriquecimiento	Hongos y levaduras

Industria: Cultivo general

Cat. 1250

Principios y usos

Caldo Czapek-Dox Modificado se usa comúnmente para el cultivo de hongos y Candida albicans. Es similar al agar modificado de Czapek-Dox (Cat. 1015), sin el agar, y se utiliza para cultivar bacterias y hongos que son capaces de usar nitrato de sodio como única fuente de nitrógeno.

El Caldo Czapek-Dox Modificado es un medio semisintético que contiene nitrato de sodio como única fuente de nitrógeno. Posee la ventaja de una formulación químicamente definida, que ha sido modificada respecto a la original al sustituir el sulfato de magnesio y el fosfato de potasio por glicerofosfato de magnesio, y así evitar la precipitación de fosfato de magnesio. El medio se elabora solamente con fuentes inorgánicas de nitrógeno y fuentes de carbono químicamente definidas. Es útil en una variedad de procedimientos microbiológicos, incluida la microbiología del suelo, y pruebas de hongos y resistencia al moho. Este medio producirá un crecimiento moderadamente bueno de la mayoría de los Aspergilli saprófitos.

La sacarosa es el único hidrato de carbono fermentable que proporciona carbono y energía. El nitrato de sodio es la única fuente de nitrógeno. Las sales de potasio actúan como un sistema de amortiguación. El cloruro de potasio contiene iones esenciales. El glicerofosfato de magnesio y el sulfato ferroso son fuentes de cationes.

Fórmula en g/L

Sulfato ferroso	0,01	Cloruro potásico	0,5
Sacarosa	30	Nitrato de sodio	3
Glicerofosfato magnésico	0,5	Sulfato dipotásico	1

Preparación

Suspender 35 gramos de medio en un litro de agua destilada. Mezclar bien y disolver calentando con agitación frecuente. Hervir durante un minuto hasta disolver por completo. Dispensar en los recipientes apropiados y esterilizar en autoclave a 121 °C durante 15 minutos.

Instrucciones de uso

Los tiempos y las temperaturas de incubación varían considerablemente según los hongos. Como regla general, incubar de 1 a 2 semanas a temperatura ambiente (aproximadamente 25 ° C). La mayoría de Penicillium crecen mejor entre 20 - 25 ° C; Las especies de Aspergillus crecen bien a alrededor de 30 ° C, pero Aspergillus fumigatus crece mejor a 50 ° C, y C. albicans a 25 ° C durante 24 - 48 horas.

Control de calidad

Solubilidad	Apariencia	Color del medio deshidratado	Color del medio preparado	Final pH (25°C)
Puede presentar un ligero precipitado	Polvo fino	Beige claro	Incoloro	6.8 ± 0.2

Test microbiológico

Condiciones de incubación: (30±2 °C / 1-5 días)

Microrganismos	Especificación
Candida albicans ATCC 10231	Buen crecimiento
Aspergillus brasiliensis ATCC 16404	Buen crecimiento
Staphylococcus aureus ATCC 25923	Crecimiento inhibido
Bacillus subtilis ATCC 6633	Crecimiento moderado
Saccharomyces cerevisiae ATCC 9763	Buen crecimiento

Almacenamiento

Temp. Min.:2 °C Temp. Max.:25 °C

Bibliografía

Thom y Raper. Manual of Aspergilli. Williams and Wilkins Co. Baltimore Md. 1945. Smith G. An Introduction to Industrial Mycology 5th Ed Arnold LR London 1960.